.

HYBRID ROBOTICS VIA YOUTUBE

Inteligencia Artificial

Cómo la IA nos acerca al paradigma de robots capaces de moverse por el mundo real

1

El aprendizaje por refuerzo puede ayudar a los robots a enfrentarse a nuevas tareas que no han intentado antes

  • por Rhiannon Williams | traducido por
  • 25 Marzo, 2024

Si has visto los ingeniosos vídeos de Boston Dynamics con robots corriendo, saltando y haciendo parkour, puede que tengas la impresión de que los robots han aprendido a ser asombrosamente ágiles. En realidad, estos robots aún se programan a mano y les costaría enfrentarse a obstáculos nuevos con los que no se han topado antes.

Sin embargo, un nuevo método para enseñar a los robots a moverse podría ayudarles a enfrentarse a nuevos escenarios mediante el método de ensayo y error, igual que los humanos aprenden y se adaptan a acontecimientos impredecibles.

Los investigadores utilizaron una técnica de inteligencia artificial llamada aprendizaje por refuerzo para ayudar a un robot de dos patas apodado Cassie a correr 400 metros sobre terrenos variados y a ejecutar saltos de altura y saltos de longitud en parada, sin que se le entrenara explícitamente en cada movimiento. El aprendizaje por refuerzo recompensa o penaliza a una IA cuando intenta alcanzar un objetivo. En este caso, el enfoque enseñó al robot a generalizar y responder en nuevos escenarios, en lugar de quedarse paralizado como podían haber hecho sus predecesores.

"Queríamos superar los límites de la agilidad robótica", explica Zhongyu Li, estudiante de doctorado de la Universidad de California en Berkeley que trabajó en el proyecto, que aún no ha sido revisado por pares. "El objetivo de alto nivel era enseñar al robot a aprender a hacer todo tipo de movimientos dinámicos como lo hace un humano".

El equipo utilizó una simulación para entrenar a Cassie, un método que acelera drásticamente el tiempo que tarda en aprender —de años a semanas— y permite al robot realizar esas mismas habilidades en el mundo real sin necesidad de más ajustes.

En primer lugar, entrenaron a la red neuronal que controlaba a Cassie para que dominara una habilidad sencilla desde cero, como saltar en el sitio, caminar hacia delante o correr hacia delante sin caerse. Se le enseñó animándola a imitar los movimientos que se le mostraban, que incluían datos de captura de movimiento recogidos de un humano y animaciones que demostraban el movimiento deseado.

Una vez completada la primera fase, el equipo dio nuevas órdenes al robot para que realizara tareas con sus nuevas habilidades de movimiento. Una vez que el robot fue capaz de realizar las nuevas tareas en un entorno simulado, diversificaron las tareas para las que había sido entrenado mediante un método llamado aleatorización de tareas.

Esto hace que el robot esté mucho más preparado para situaciones inesperadas. Por ejemplo, el robot fue capaz de mantener una marcha estable mientras tiraban de él hacia un lado con una correa. "Permitimos al robot utilizar el historial de lo que ha observado y adaptarse rápidamente al mundo real", afirma Li.

Cassie completó una carrera de 400 metros en dos minutos y 34 segundos, y luego saltó 1,4 metros en salto de longitud sin necesidad de entrenamiento adicional.

Los investigadores planean ahora estudiar cómo podría utilizarse este tipo de técnica para entrenar robots equipados con cámaras. Esto supondrá un reto mayor que completar acciones a ciegas, añade Alan Fern, profesor de informática de la Universidad Estatal de Oregón que ayudó a desarrollar el robot Cassie pero no participó en este proyecto.

"El siguiente gran paso en este campo son los robots humanoides que hacen un trabajo real, planifican actividades e interactúan con el mundo físico de formas que no son sólo interacciones entre los pies y el suelo", afirma.

Inteligencia Artificial

 

La inteligencia artificial y los robots están transformando nuestra forma de trabajar y nuestro estilo de vida.

  1. Los nuevos asistentes de OpenAI y Google auguran la próxima batalla de la IA 

    Prometen estar muy por delante de herramientas como Siri o Alexa. 

    collage de capturas de pantalla de las demos GPT4o y Project Astra
  2. Astra, la apuesta de Google para ampliar la capacidad de la IA verá la luz a finales de año

    Los usuarios podrán interactuar con el asistente de inteligencia artificial mediante audio y vídeo cuando se lance a finales de este año. 

    Captura de pantalla de la demo de Astra en la que el usuario dibuja una flecha roja en la pantalla del teléfono donde la cámara del teléfono muestra la parte superior de un altavoz en un escritorio de la habitación, y Astra responde diciendo que el altavoz de agudos “produce sonidos de alta frecuencia”
  3. AlphaFold 3 de Google DeepMind puede predecir cómo interactúan el ADN, el ARN y otras moléculas

    AlphaFold 3 puede predecir cómo interactúan el ADN, el ARN y otras moléculas, lo que consolida aún más su papel de liderazgo en el descubrimiento de fármacos y la investigación. ¿A quién beneficiará? 

    Modelo AlphaFold 3 de Google Deepmind