.

Science Robotics / John Hopkins University, Will Kirk / Homewood Photography

Inteligencia Artificial

Este robot gana a la Jenga con nociones de física y sentido del tacto

1

Gracias a esta combinación de habilidades, la máquina razona por sí misma qué piezas debe mover y cómo moverlas. El enfoque podría lograr que los robots industriales sean más útiles y menos torpes

  • por Will Knight | traducido por Ana Milutinovic
  • 04 Febrero, 2019

A pesar de los deslumbrantes avances en la inteligencia artificial (IA), los robots siguen siendo terriblemente torpes (ver Los robots demuestran que aún son "estúpidos" en el reto DARPA).

Para hacerlos más adaptables y hábiles, investigadores y empresas están recurriendo cada vez más al aprendizaje automático. Por lo general, esto implica enseñarle un vídeo de lo que hay frente a él y pedirle que aprenda qué movimientos debe hacer para manipular dicho objeto. Por ejemplo, un equipo de OpenAI, una organización sin ánimo de lucro en San Francisco (EE.UU.), enseñó a una mano robótica a manipular un cubo infantil de esta manera (ver La IA que pasó cien años de soledad aprendiendo a usar una mano).

Pero los humanos usamos más cosas además de los ojos para aprender a manejar objetos. La visión se combina con un sentido del tacto, y aprendemos, desde el principio, que los objetos colocados de forma inestable probablemente se caerán.

Este esquema de aprendizaje fue la inspiración para un nuevo robot desarrollado por el investigador del MIT Nima Fazeli y sus compañeros. El equipo ha dotado al robot de una comprensión fundamental de la física del mundo real y del sentido del tacto.

Para demostrar su agilidad, el robot se enfrentó a una torre de Jenga, un juego que consiste en ir quitando bloques de la torre sin que se caiga. También mostró su ingenio a la hora de decidir qué bloque quitar sin que la torre se cayera.

La investigación se basa en varias ideas clave desarrolladas por el investigador del Departamento de Ciencias Cognitivas y Estudios de la Mente del MIT Josh Tenenbaum y su trabajo sobre el conocimiento humano. Su enfoque se basa en que los humanos desarrollan una comprensión intuitiva de la física desde pequeños, y que la probabilidad es la clave para razonar sobre el mundo. Esto difiere de muchas de las actuales investigaciones de IA, que giran en torno a la alimentación de las redes neuronales muy grandes o "profundas" con la mayor cantidad de datos posible.

El robot, equipado con sensores de fuerza y ​​cámaras, aprendió a jugar a Jenga toqueteando y empujando los bloques y utilizando la retroalimentación visual y táctil para aprender el esquema físico del mundo. Cuando se enfrentó a una nueva torre de bloques, usó ese esquema para deducir qué bloque debería intentar quitar de la torre. Se puede ver lo bien que se le daba en el vídeo de arriba.

Al combinar la visión, el tacto y este modelo físico del mundo real, el robot aprende a jugar a Jenga de la manera más eficiente posible. El modelo físico intuitivo también permite al robot comprender rápidamente que lo más probable es que un bloque que cuelga sobre un borde se caiga. En las pruebas, este enfoque superó a los métodos convencionales de aprendizaje automático. El estudio se ha publicó la semana pasada en la revista Science Robotics.

Esta técnica más humana de aprendizaje podría ayudar a que los robots de fábricas y almacenes sean mucho más capaces. Si eso falla, al menos podríamos jugar a Jenga con ellos.

Inteligencia Artificial

 

La inteligencia artificial y los robots están transofrmando nuestra forma de trabajar y nuestro estilo de vida.

  1. Los líderes de la ética de la IA siguen repitiendo sesgos e injusticias

    A pesar de los distintos esfuerzos internacionales por lograr que la inteligencia artificial sea justa y representativa para todos, los comités y juntas asesoras casi no tienen representación de grupos minoritarios ni de regiones e idiomas con poca influencia a nivel mundial. Eso tiene que cambiar 

  2. Nace una IA sabelotodo capaz de leer todo el contenido de internet

    A diferencia de GPT-3, la inteligencia artificial de Diffbot genera gráficos de conocimiento de forma automática a partir de toda la información disponible en la web, en cualquier idioma. Ya se usa para buscar productos falsificados y hacer análisis financieros, entre otras aplicaciones

  3. Lo-Fi Player de Google, la herramienta más fácil para componer música

    El sistema permite a los usuarios interactuar con distintos objetos de una habitación virtual para mezclar sus propias bandas sonoras con ayuda de dos sistemas de IA y algunas melodías compuestas por el tecnólogo y artista Vibert Thio, quien espera convertirlo en una especie de TikTok para la creación musical