.

Tsjisse Talsma

Robótica

Por qué necesitamos expertos que estudien cómo se comporta la IA

1

Aún no entendemos cómo toman las máquinas algunas decisiones. Para solucionarlo, un grupo de investigadores ha propuesto crear una nueva disciplina de estudio que se encargue de analizarlas de la misma forma que los científicos sociales estudian a las personas: a través de observación y experimentación

  • por Karen Hao | traducido por Ana Milutinovic
  • 06 Mayo, 2019

Se ha escrito mucho sobre la naturaleza de la caja negra de los sistemas de inteligencia artificial (IA) y sobre lo incómodo que nos resulta no poder entender por qué toman algunas decisiones. Y como los algoritmos han empezado a mediarlo todo, desde nuestras interacciones sociales y culturales hasta las económicas y políticas, los informáticos han intentado responder a las crecientes demandas de explicar todo eso desarrollando métodos técnicos para comprender sus comportamientos.

Sin embargo, un grupo de investigadores de universidades y de la industria  sostienen ahora que no hace falta penetrar en estas cajas negras para comprender y, por tanto, controlar su efecto en nuestras vidas. Al fin y al cabo, estas no son las primeras cajas negras indescifrables que se han encontrado.

"Hemos desarrollado métodos científicos para estudiar las cajas negras durante cientos de años, pero estos métodos se ha aplicado principalmente a seres vivos hasta este momento", afirma el investigador del MIT Media Lab (EE.UU.) y coautor de un nuevo artículo publicado la semana pasada en Nature, Nick Obradovich. "Podemos aprovechar muchas de esas mismas herramientas para analizar los nuevos sistemas de caja negra de la IA".

Los autores de este artículo, un grupo diverso de investigadores del sector y de las universidades, propone crear una nueva disciplina de estudio llamada "comportamiento de máquinas". Se trataría de estudiar los sistemas de IA de la misma manera que siempre hemos estudiado los animales y los humanos: a través de la observación empírica y la experimentación.

De esta forma, un experto en la conducta de máquinas es para un informático lo que un científico social es para un neurólogo. El primero busca comprender cómo se comporta un agente, ya sea artificial o biológico, en su hábitat, cuando coexiste en grupos y cuando interactúa con otros agentes inteligentes. El otro busca examinar los mecanismos de la toma de decisiones detrás de esos comportamientos.

"Estamos viendo el surgimiento de entes artificiales, máquinas que son agentes que toman decisiones y actúan de manera autónoma", afirmó otro investigador de MIT Media Lab y autor principal de este artículo, Iyad Rahwan, en un blog que acompaña la publicación. Por lo tanto, deben ser estudiados "como una nueva clase de actores con sus propios patrones de comportamiento y ecología".

Esto no sugiere que los sistemas de inteligencia artificial hayan desarrollado algún tipo de libre albedrío. Por supuesto que no lo han hecho, siguen siendo solo modelos matemáticos glorificados (ver  Si quiere saber qué es el aprendizaje automático, mire este gráfico). Pero sí que recomienda dejar de ver los sistemas de inteligencia artificial como herramientas pasivas que se pueden analizar únicamente a través de su arquitectura técnica, rendimiento y capacidades. En cambio, deben considerarse como actores activos que cambian sus entornos e influyen en ellos y en las personas y en las máquinas a su alrededor.

 Un experto en el comportamiento de las máquinas podría estudiar, por ejemplo, el impacto de los asistentes de voz en el desarrollo de la personalidad de niños. O podrían analizar cómo los algoritmos de citas online han cambiado la forma en la que las personas se encuentran y se enamoran. Al final, estudiarían las propiedades emergentes que surgen cuando muchos seres humanos y máquinas que coexisten y colaboran entre sí.

"Todos somos un sistema gigantesco de humanos y máquinas", sostiene Obradovich. "Debemos reconocerlo y empezar a tratarlo tal y como es".

Es importante tener en cuenta que la mayoría de estas ideas no son nuevas. Los expertos en robótica, por ejemplo, llevan mucho tiempo estudiando la interacción entre humanos y ordenadores. Y en el campo de la ciencia, la tecnología y la sociedad tienen lo que se conoce como la "teoría del actor-red": un marco para describir todo en el mundo social y natural, tanto de humanos como de algoritmos, como si fueran actores que de alguna manera se relacionan entre sí.

Pero en general, cada uno de estos esfuerzos se ha aislado en distintas disciplinas. Reunirlos bajo un solo paraguas ayudaría a organizar sus objetivos, determinar un lenguaje común y fomentar las colaboraciones interdisciplinarias. "Nos ayudará a encontrarnos", dice Obradovich.

A pesar de trabajar en una disciplina distinta a la de los investigadores de la IA, los expertos en el comportamiento de las máquinas deberían trabajar estrechamente con ellos. Los segundos descubren nuevas maneras en las que los sistemas de IA se comportan y afectan a las personas, por lo que los primeros pueden aprovechar esos aprendizajes para diseñar los sistemas. Cuanto más pueda una disciplina aprovechar los conocimientos de la otra, mayores serán las garantías que los agentes artificiales beneficien a los humanos en lugar de perjudicarles.

"Necesitamos los conocimientos de los científicos de todas las disciplinas de comportamiento e informática", concluye Obradovich. "Descubrir cómo convivir con las máquinas es un problema demasiado grande para que una sola disciplina pueda resolverlo sola".

Robótica

 

La inteligencia artificial y los robots están transofrmando nuestra forma de trabajar y nuestro estilo de vida.

  1. Asia lidera el uso de robots mucho más de lo que se creía

    Al analizar el número de autómatas industriales de los países en función de sus salarios, los países asiáticos se ponen muy por encima de Europa y América, que los están incorporando mucho más despacio de lo esperado, lo que podría tener efectos en su futura competitividad

  2. La IA aprende a traducir lenguas muertas automáticamente

    Se trata de un avance extraordinario que podría llegar a descifrar idiomas antiguos que se han perdido. El enfoque se basa en poner límites a la inteligencia artificial más allá de los datos disponibles. El algoritmo ni siquiera necesita saber qué significa cada palabra

  3. Muchos jóvenes y problemas reales: el futuro de la IA está en África

    La comunidad de inteligencia artificial en el continente ha florecido y varios gigantes ya tienen sedes allí. Intentan aplicar la tecnología para solucionar los retos fundamentales a los que se enfrenta su población y enseñar a sus jóvenes para que se conviertan en la próxima generación de profesionales del sector