.

NIAID

Biotecnología

Así es la primera bacteria de 'E. coli' con un genoma 100 % artificial

1

Se trata del mayor organismo sintético creado hasta la fecha, y han hecho falta dos años para completarlo. El equipo también ha logrado comprimir su código genético, lo que abre la puerta a la fabricación de nuevos polímeros sintéticos revolucionarios de origen bacteriano

  • por Antonio Regalado | traducido por Ana Milutinovic
  • 27 Mayo, 2019

Un equipo de investigadores afirma que ha reemplazado todos los genes de la bacteria E. coli por una copia completa del genoma sintético creado en laboratorio. El trabajo da un paso más hacia la creación de organismos artificiales diseñados genéticamente para fabricar materiales específicos como el Kevlar u otros polímeros.

Los científicos de la Universidad de Cambridge (Reino Unido) han publicado su trabajo en la revista Nature. En él explican cómo reemplazaron gradualmente y por etapas el genoma completo de este organismo (que tiene cuatro millones de letras de ADN) con genes creados artificialmente.

El biólogo del Consejo de Investigación Médica de Reino Unido, quien dirigió el equipo, Jason Chin, detalla: "Hemos tardados dos años, pero nos gustaría poder llegar a crear nuevos genomas sintéticos en menos de un mes. Eso aceleraría enormemente el campo, la cantidad de lo que podemos hacer y probar". 

Los primeros genomas bacterianos sintéticos se crearon en 2008 y 2010 en el Instituto J. Craig Venter. Pero el genoma de E. coli, cuatro veces mayor, supone un nuevo récord. Hay otro equipo distinto intentando crear levadura de panadería con genes artificiales, pero ese proyecto aún se ha completado.

Al reemplazar el genoma de esta bacteria, el equipo de Chin también lo ha simplificado al reemplazar algunos de los conjuntos de instrucciones de ADN de tres letras (o codones), que ayudan a las células a determinar cuál de los 20 aminoácidos deben agregar a una proteína. El resultado es que la E. coli artificial de Chin tiene solo 61 codones en lugar de los 64 habituales.

Eso significa que esta nueva especie de la bacteria, llamada Syn61, no solo tienen genes creados artificialmente, sino que también demuestra que el organismo puede vivir con lo que el equipo de Reino Unido llama un código genético "comprimido".

Chin detalla: "Lo primero es un logro técnico; lo otro nos ofrece un conocimiento biológico fundamental y sobre lo maleable que es realmente el código genético".

Simplificar el genoma de E. coli significa que las partes no utilizadas del código ahora tienen la libertad de hacer otras cosas. Por ejemplo, podrían reutilizarse para que las bacterias produzcan proteínas y cualquiera de los 200 aminoácidos que normalmente no usan. Eso podría permitir que el organismo empiece a fabricar polímeros bacterianos insólitos, como el material que se utiliza en los chalecos antibalas.

También existe una cuestión científica, asegura Chin. Desde la década de 1960, cuando los científicos descifraron su código genético por primera vez, no se sabe por qué funciona exactamente de esa manera, con tantas posibilidades, ¿por qué así?

En 1968, el codescubridor de la estructura química del ADN Francis Crick propuso la teoría del "accidente congelado". Según él, una vez que las formas de vida básicas evolucionaron, los códigos triples quedaron bloqueados porque cualquier desviación del programa universal supondría una gran desventaja. Chin concluye: "Al eliminar los codones, estamos rompiendo ese lenguaje común. Estamos descongelando el código".

Biotecnología

Nuevas tecnologías y conocimientos biológicos empiezan a ofrecer opciones sin precedentes para mejorar nuestra salud.

  1. EXCLUSIVA: la investigación inédita de las gemelas CRISPR de China

    Presentamos algunos extractos del manuscrito original de He Jiankui sobre su trabajo para crear a las gemelas editadas genéticamente Lulu y Nana. El texto, analizado por expertos, demuestra que el He ignoró las normas éticas y científicas y que puede haber puesto en riesgo la salud de las pequeñas

  2. La era Gattaca: así funciona el test de ADN para elegir el mejor embrión

    Calificado como un "23andMe, pero en embriones", afirma poder predecir qué sujetos de FIV tienen menos probabilidad de padecer varias enfermedades y rasgos como el nivel de inteligencia y la altura. Sin embargo, sus problemas éticos y su falta de fiabilidad han hecho saltar las alarmas de varios expertos

  3. Riesgos y beneficios de un IoT biológico basado en bacterias

    Estos organismos presentan muchas de las características típicas de los dispositivos de internet de las cosas. Un sistema de este tipo podría tratar enfermedades de forma localizada e identificar toxinas y contaminantes. Pero también sería susceptible a hackeos biológicos de pesadilla