.

Ms. Tech

Computación

Demostrado el primer radar cuántico de la historia

1

El dispositivo basado en fotones entrelazados por microondas ofrece múltiples ventajas a corta distancia frente a los modelos convencionales. La baja potencia de su funcionamiento abre la puerta a aplicaciones médicas no invasivas y de seguridad

  • por Emerging Technology From The Arxiv | traducido por Ana Milutinovic
  • 05 Septiembre, 2019

Una de las ventajas de la revolución cuántica es la capacidad de percibir el mundo de forma distinta. La idea general consiste en utilizar las propiedades especiales de la mecánica cuántica para realizar mediciones o producir imágenes imposibles de otro modo.

Gran parte de este trabajo se realiza con fotones. Pero en lo que respecta al espectro electromagnético, la revolución cuántica ha tenido una evolución desigual. Casi todos los avances en computación cuántica, criptografía cuántica, teletransporte cuántico, etcétera, se han hecho con luz visible o cercana al espectro visible.

El investigador del Instituto de Ciencia y Tecnología de Austria Shabir Barzanjeh y su equipo ha utilizado microondas entrelazadas para crear el primer radar cuántico del mundo. Su dispositivo, que puede detectar objetos a distancia con solo unos pocos fotones, abre la posibilidad a sistemas de radar sigilosos que emiten muy poca radiación electromagnética detectable.

La esencia del dispositivo es simple. Los investigadores crean pares de fotones de microondas entrelazados mediante un dispositivo superconductor llamado convertidor de parámetros Josephson. Transmiten el primer fotón, llamado fotón señal, hacia el objeto de interés y escuchan el reflejo. Mientras tanto, se quedan con el segundo fotón, llamado fotón ocioso. Al llegar, el reflejo interfiere con el fotón ocioso para crear una firma que revela lo lejos que ha viajado el fotón señal. ¡Y ya está, el radar cuántico!

Esta técnica ofrece algunas ventajas importantes sobre el radar convencional. La versión clásica del dispositivo funciona de manera similar, pero falla a niveles de baja potencia que involucran pequeñas cantidades de fotones de microondas. Esto se debe a que, en el medio ambiente, los objetos calientes emiten sus propias microondas.

En un entorno a temperatura ambiente, esta emisión es de alrededor de 1.000 fotones de microondas en cualquier instante, capaces de ahogar el eco que regresa. Es por eso que los sistemas de radar requieren transmisores potentes. Pero los fotones entrelazados son capaces de superar este problema. Los fotones señal y los ociosos son tan similares que es fácil filtrar los efectos de otros fotones. Por lo tanto, resulta sencillo detectar la señal del fotón cuando regresa.

Por supuesto, el entrelazamiento es una propiedad frágil del mundo cuántico, y el reflejo lo destruye. Sin embargo, la correlación entre los fotones señal y los ociosos sigue siendo suficientemente fuerte como para distinguirlos del ruido de fondo. Esto permite a Barzanjeh y su equipo detectar un objeto a temperatura ambiente en un entorno a temperatura ambiente con solo unos pocos fotones. Esto sería imposible para los fotones normales. La investigación detalla: "Generamos campos entrelazados mediante un convertidor de parámetros Josephson a temperaturas de milikelvin para iluminar un objeto a temperatura ambiente a una distancia de un metro en una prueba de concepto de este radar".

Los investigadores comparan su radar cuántico con sistemas convencionales con cantidades de fotones igualmente bajas y aseguran que su modelo los supera bastante, aunque solo a distancias relativamente cortas.

Se trata de un trabajo interesante que revela el gran potencial del radar cuántico y ofrece la primera aplicación de entrelazamiento basado en microondas. Pero también muestra la aplicación de la posible iluminación cuántica en general.

Una de sus grandes ventajas es el bajo nivel de radiación electromagnética que requiere. Barzanjeh detalla: "Nuestro experimento muestra potencial como método de exploración no invasivo para aplicaciones biomédicas, por ejemplo, para imágenes de tejidos humanos o espectroscopía rotacional no destructiva de proteínas".

También está la aplicación obvia de radar sigiloso, difícil de detectar por adversarios. Los investigadores concluyen que podría ser útil como radar de baja potencia y corto alcance para las aplicaciones de seguridad en entornos cerrados y poblados.

Ref: arxiv.org/abs/1908.03058Experimental Microwave Quantum Illumination

Computación

Las máquinas cada vez más potentes están acelerando los avances científicos, los negocios y la vida.

  1. Se busca tecnología para detectar explosivos mejor que los perros

    El Ejército estadounidense cuenta con más de mil perros entre sus filas. Pese a que los investigadores han intentado desarrollar dispositivos que superen la sensibilidad de los hocicos de los canes, por el momento los rastreadores electrónicos de bombas son menos efectivos y requieren demasiada infraestructura

  2. Resuelto el misterio de las 'lágrimas' que forma el vino en una copa

    Durante siglos, los científicos han intentado averiguar por qué se produce este fenómeno, y un equipo parece haberlo descubierto. El responsable es un fenómeno de la mecánica de fluidos conocido como ondas de choque

  3. "Faltan unos años para crear ordenadores cuánticos que funcionen bien"

    Hablamos en exclusiva con el CEO de Google, Sundar Pichai, sobre cómo la compañía ha logrado la supremacía cuántica, un hito que a su juicio supone el comienzo de un gran avance en el campo. Combinada con la IA, el líder tecnológico está convencido de que la computación cuántica impulsará avances para resolver desafíos como el cambio climático