.

Computación

El grafeno gana el Premio Nobel

1

Se concede el premio a un par de físicos del Reino Unido por demostrar las inusuales propiedades de este material.

  • por Katherine Bourzac | traducido por Joan Minguet (Opinno)
  • 07 Octubre, 2010

El Premio Nobel de Física del 2010 ha sido concedido a los dos investigadores que realizaron los primeros experimentos sobre el grafeno, una lámina bidimensional de átomos de carbono. El premio, otorgado a los físicos de la Universidad de Manchester Andre Geim y Konstantin Novoselov, reconoce el trabajo que comenzó hace menos de una década sobre un material que desde entonces ha sido utilizado para desarrollar transistores rompedores de récords y eléctrodos elásticos.

El grafeno es un material de muchos superlativos: es el mejor conductor de la electricidad a temperatura ambiente y el material más duro jamás probado. También es un excelente conductor del calor, y es transparente y flexible. Antes del trabajo de Geim y Novoselov, los investigadores habían teorizado la existencia del material, y habían predicho que podría ser utilizado para desarrollar transistores más de 100 veces más rápidos que los chips de silicio actuales. No obstante, hasta que los investigadores del Reino Unido fabricaron y probaron el grafeno en 2004, muchos físicos creían que los materiales de sólo un átomo de espesor serían inestables.

En 2004, Geim y Novoselov obtuvieron grafeno en el laboratorio mediante el uso de cinta adhesiva para pelar un trozo de grafito en hojas cada vez más delgadas, como se puede ver en este vídeo. Una hoja de grafeno consiste en una única capa de átomos de carbono entrelazados en un patrón hexagonal, parecido al de un panal de abejas.

El grafeno es un material presente en la naturaleza. Son varias capas de grafeno las que conforman el grafito de la punta de un lápiz. Al trazar el lápiz contra el papel, estas capas se rompen, depositando finas capas de estas hojas de carbono. Rompiendo el grafito y pelándolo con cinta adhesiva en copos cada vez más delgados y con el tiempo en láminas de solo un átomo de espesor. Geim y Novoselov fueron capaces de fabricar cantidades usables de grafeno que podían ser estudiadas y que acabaron con las dudas sobre la estabilidad del grafeno.

En su trabajo inicial, en 2004, no sólo demostraron que habían obtenido grafeno, sino que también dilucidaron sus propiedades eléctricas estudiando su estructura y conectándolo a electrodos. "Ellos no fueron los primeros en ver el grafeno, pero sin duda fueron Geim y Novoselov quienes realmente abrieron la puerta para poder estudiarlo", afirma James Tour, profesor de química de la Universidad Rice.

Una vez desarrollado este sistema experimental para estudiar el material, Geim y Novoselov, y otros investigadores que les siguieron, descubrieron algunas cosas notables. En primer lugar, en el grafeno los electrones se comportan como si no tuvieran masa, moviéndose hacia adelante a velocidades de un millón de metros por segundo. (Compare esto con la velocidad de la luz en el vacío, 300 millones de metros por segundo.) Además, mientras que los electrones suelen rebotar con los obstáculos en el interior de un material conductor, los electrones que se mueven a través de la red hexagonal perfecta de grafeno avanzan viento en popa.

La estructura perfecta del grafeno da lugar a efectos cuánticos exóticos que están siendo estudiados por los físicos. Sin embargo, las propiedades eléctricas del material, su transparencia y su dureza han sido aprovechadas por los ingenieros para desarrollar de todo, desde pantallas táctiles hasta células solares de materiales estructurales ligeros. Los investigadores de IBM están desarrollando matrices de transistores de grafeno que hacen morder el polvo a los transistores de silicio convencionales, y un grupo de Samsung está desarrollando electrodos impresos de grafeno para su uso en pantallas táctiles transparentes y flexibles.

En reconocimiento al prometedor futuro del material, TR seleecionó el trabajo del Georgia Tech sobre transistores de grafeno como una de las tecnologías emergentes más prometedoras del año 2008; el mismo año reconocimos a Novoselov con nuestro premio jóvenes investigadores, el TR35.

La técnica de Geim y Novoselov puede ser utilizada para obtener grafeno en cantidades relativamente pequeñas, lo suficiente como para estudiarlo en el laboratorio y desarrollar dispositivos de prueba, pero en absoluto suficiente para su fabricación en masa. En los años transcurridos, los investigadores han desarrollado varios métodos para la obtención de grandes cantidades de material, y actualmente están aprendiendo a utilizarlo para fabricar dispositivos.

"Actualmente tenemos que encontrar nuevas maneras fiables de sintetizar grafeno a gran escala, y hacer estas tecnología reproducibles de una manera que tenga sentido económico", afirma Phaedon Avouris, un investigador que está desarrollando transistores de grafeno y fotodetectores en el Centro de Investigación Watson de IBM en Yorktown Heights, Nueva York.

Computación

Las máquinas cada vez más potentes están acelerando los avances científicos, los negocios y la vida.

  1. El cerebro procesa las palabras que más usa de forma distinta al resto

    Los patrones de frecuencia de 50 idiomas demuestran que el lenguaje depende de un proceso dual. Los términos más frecuentes se procesan instintivamente mientras que los menos usados requieren un pensamiento racional. El hallazgo podría ser clave para el procesamiento del lenguaje natural

  2. Aislar el protocolo de consenso podría revolucionar 'blockchain'

    Las grandes debilidades de los contratos inteligentes en cadenas de bloques, como su falta de confidencialidad y sus limitaciones de ejecución, podrían solucionarse con este enfoque de la 'start-up' Oasis Lab, cuya idea ya ha recaudado casi 40 millones de euros en inversiones

  3. La computación a exaescala busca máquinas pero también aplicaciones

    Mientras los ordenadores cuánticos funcionales siguen intentando despegar, los países compiten en el terreno de la supercomputación. Los primeros superordenadores a exaescala podrían llegar en 2021, pero también hacen falta programas especializados para que sean realmente útiles