.

Yaopai

Computación

Un truco para que la IA consuma menos con los mismos datos

1

La poda sináptica aligera los algoritmos al eliminar las neuronas y las conexiones que menos contribuyen a conseguir resultados. De momento, parece la única vía para solucionar el problema de la enorme potencia computacional que requieren las técnicas de aprendizaje automático actuales

  • por Yiting Sun | traducido por Marta del Amo
  • 06 Febrero, 2018

En enero, Google lanzó llamado Cloud AutoML, un nuevo servicio en la nube que permite al usuario automatizar algunos aspectos complicados del diseño de software de aprendizaje automático (ver Construya una inteligencia artificial a medida con lo nuevo de Google). Mientras trabajaban en este proyecto, los investigadores de la compañía llegaron a tener que utilizar hasta 800 tarjetas gráficas de forma simultánea para entrenar sus poderosos algoritmos (ver La ley de Moore abre una brecha entre la inteligencia artificial y la computación clásica).

A diferencia de los humanos, que solo necesitan un par de ejemplos para aprender a reconocer una taza de café, las redes neuronales de la inteligencia artificial (IA) necesitan  ver decenas de miles de ejemplos para aprender a identificar un objeto. Si tiene en cuenta que cada objeto aprendido por una red neuronal requiere el mismo proceso, empezará a entender por qué el software de IA requiere tanta potencia computacional.

Si los investigadores fueran capaces de diseñar redes neuronales que pudieran ser entrenadas con solo unos pocos ejemplos, "cambiarían todo el paradigma", afirmó el vicepresidente de ingeniería de Qualcomm, Charles Bergan, al público de la conferencia EmTech de MIT Technology Review celebrada en China la semana pasada (ver Una máquina de Google logra reconocer objetos que solo ha visto una vez).

Si las redes neuronales llegaran a ser capaces de dominar el "aprendizaje único", dijo Bergan, el engorroso proceso de alimentar algoritmos con grandes cantidades de datos se volvería obsoleto. Esto podría tener serias consecuencias para la industria del hardware, ya que tanto los gigantes tecnológicos como las start-ups del sector se están centrando en desarrollar procesadores más potentes para ejecutar los algoritmos de inteligencia artificial que tantos datos requieren actualmente (ver La nueva carrera de los chips de silicio se libra en el cuadrilátero de la inteligencia artificial).

Dominar el aprendizaje único también permitiría que el aprendizaje automático fuera mucho más eficiente. Aunque este tipo de redes neuronales aún no son posibles, ya hay varias investigaciones en curso que intentan reducir los algoritmos sin perder precisión, según explicó al público el científico en jefe de Nvidia, Bill Dally.

Los investigadores de Nvidia se basan en un proceso llamado poda sináptica que consiste en hacer que una red neuronal sea más pequeña y más eficiente de ejecutar. Para ello, se eliminan las neuronas artificiales y las conexiones más ineficientes, es decir las que no contribuyen directamente al resultado. "Hay formas de entrenamiento que pueden reducir la complejidad del aprendizaje basado en grandes cantidades de datos", concluyó Dally.

Computación

Las máquinas cada vez más potentes están acelerando los avances científicos, los negocios y la vida.

  1. Un famoso algoritmo cuántico podría ser parte de la propia naturaleza

    El algoritmo de Grover, que acelera las búsquedas en bases de datos, parece estar presente en procesos naturales como el ensamblaje del ADN. La idea de que la mecánica cuántica forma parte de la biología fue desacreditada, pero sus críticos podrían estar equivocados

  2. Demostrado el primer radar cuántico de la historia

    El dispositivo basado en fotones entrelazados por microondas ofrece múltiples ventajas a corta distancia frente a los modelos convencionales. La baja potencia de su funcionamiento abre la puerta a aplicaciones médicas no invasivas y de seguridad

  3. Así es el ordenador de nanotubos de carbono más potente del mundo

    Se trata de un microprocesador funcional de 16 bits construido a partir de más de 14.000 transistores de nanotubos de carbono creado por el MIT. Para lograr tal avance, el equipo ha desarrollado varias soluciones para algunos de los históricos problemas de fabricación de chips