.

John Giannandrea

Computación

Google advierte: el verdadero peligro de la IA no son los robots asesinos sino los algoritmos sesgados

1

El director de Inteligencia Artificial de la compañía, John Giannandrea, cree que ya es hora de dejar de hablar de máquinas que destruirán a la humanidad. Lo que le quita el sueño son los sistemas autónomos que ya toman decisiones sobre la salud, los seguros y las libertades de las personas

  • por Will Knight | traducido por Patricia R. Guevara
  • 09 Octubre, 2017

Al jefe de inteligencia artificial (IIA) de Google los robots asesinos superinteligentes no le quitan el sueño. En su lugar, John Giannandrea está preocupado por el peligro que puede acechar dentro de los algoritmos de aprendizaje automático utilizados para tomar millones de decisiones cada minuto (ver El día que los algoritmos empezaron a discriminar a la gente sin querer)

Antes de una reciente conferencia de Google sobre la relación entre los seres humanos y los sistemas de IA, el responsable afirmó:"La verdadera cuestión de seguridad, si quiere llamarse así, es que si les damos a estos sistemas datos sesgados, estarán sesgados".

Es probable que el problema del sesgo en el aprendizaje automático crezca a medida que la tecnología se extiende a áreas críticas como la medicina y el derecho, y también aumentará cuanta más gente sin una profunda comprensión técnica suficiente tenga que implementarla. Algunos expertos advierten de que el sesgo algorítmico ya es omnipresente en muchas industrias, y que casi nadie está haciendo un esfuerzo para identificarlo o corregirlo (ver Los algoritmos sesgados están por todas partes, y parece que a nadie le importa).

Giannandrea añade: "Es importante que seamos transparentes sobre los datos de entrenamiento que usamos y que busquemos prejuicios ocultos en ellos. De lo contrario, estaremos construyendo sistemas sesgados. Si alguien está tratando de vender un sistema tipo caja negra como apoyo para la decisión médica, pero usted no sabe cómo funciona ni qué datos se utilizaron para entrenarlo, entonces yo no confiaría en él".

Los modelos de aprendizaje automático de caja negra ya están teniendo un impacto importante en la vida de algunas personas. Un sistema llamado COMPAS, creado por una compañía llamada Northpointe, promete predecir la probabilidad de reincidencia de los acusados. Algunos jueces ya lo usan para determinar si un recluso debe beneficiarse de la libertad condicional. El funcionamiento de COMPAS es secreto, pero una investigación de ProPublica halló pruebas de que el modelo puede estar sesgado en perjuicio de las minorías.

Pero para resolver el problema no basta con publicar los detalles de los datos o del algoritmo empleado. Muchas de las técnicas emergentes de aprendizaje más potentes son tan complejas y opacas que dificultan un análisis en profundidad (ver El secreto más oscuro de la inteligencia artificial: ¿por qué hace lo que hace?). Para abordar esta cuestión, los investigadores están explorando maneras de hacer que estos sistemas den alguna aproximación de su trabajo a ingenieros y a usuarios finales(ver Se acabó la confianza ciega, la inteligencia artificial debe explicar cómo funciona).

Giannandrea tiene buenas razones para alertar del sesgo potencial que puede infiltrarse en la inteligencia artificial. Google es una de las grandes empresas que alaban las capacidades de IA de sus plataformas de cloud computing de todo tipo de negocios. Estos sistemas de aprendizaje automático, basados ​​en la nube, están diseñados para ser mucho más fáciles de usar que los algoritmos subyacentes. Esto ayudará a que la tecnología sea más accesible, pero también podría facilitar el sesgo. Además, será importante ofrecer tutoriales y herramientas para ayudar a científicos e ingenieros de datos con menos experiencia a identificar y eliminar sesgos de sus datos de entrenamiento.

Varios de los ponentes de la conferencia organizada por Google también destacaron el tema del sesgo. La investigadora de Google, Maya Gupta, comentó sus esfuerzos para construir algoritmos menos opacos dentro del equipo conocido internamente como "GlassBox". La profesora de ciencias de la computación en la Universidad de Illinois (EEUU) Karrie Karahalios presentó investigaciones que destacaban la complejidad de detectar el sesgo incluso en los algoritmos más habituales. Karahalios mostró que los usuarios generalmente no entienden cómo Facebook filtra los mensajes mostrados en su tablón de noticias. Aunque esto puede parecer inocuo, ilustra lo complejo que es interrogar a un algoritmo.

Sin duda, el algoritmo de alimentación de noticias de Facebook influye en la percepción que el público tiene de las interacciones sociales e incluso de eventos de noticias importantes. Puede que otros algoritmos ya estén distorsionando sutilmente los tipos de atención médica que una persona recibe, o cómo se la trata en el sistema de justicia penal. Seguro que esto es mucho más importante que los robots asesinos (al menos por ahora).

Ciertamente, Giannandrea ha sido la voz de la razón de los últimos años entre algunas advertencias más fantásticas sobre los riesgos planteados por la IA. Elon Musk, en particular, ha generado innumerables titulares al advertir recientemente que la inteligencia artificial es una amenaza más grande que Corea del Norte, y que podría dar lugar a la Tercera Guerra Mundial.

Giannandrea concluyó: "Me opongo a la creencia de que daremos el salto a algún tipo de sistema superinteligente que hará que los seres humanos se queden obsoletos. Entiendo por qué la gente se preocupa por ello, pero creo que ya ha estado demasiado tiempo en el aire. No creo que haya ninguna base tecnológica que indique en absoluto que esto es inminente".

Computación

Las máquinas cada vez más potentes están acelerando los avances científicos, los negocios y la vida.

  1. Accuvant, la empresa que ayudó a los Emiratos Árabes a hackear iPhones

    Aprovechaba un error en iMessage de Apple para apoderarse del teléfono de la víctima y se utilizó contra cientos de personas en Karma, una gran campaña de vigilancia y espionaje entre cuyos objetivos figuran rivales geopolíticos, disidentes y activistas. El FBI acaba de multar a los responsables

  2. Starlink: la solución a la brecha digital que casi nadie podrá pagar

    Aunque la tarifa mensual para acceder a internet con sus satélites LEO resulta asequible, requiere un alto precio de instalación inalcanzable para muchos, a pesar de que SpaceX lo vende en pérdidas. Necesitará aumentar su base de clientes para ser rentable y económico, pero eso reducirá la velocidad para todos

  3. Disfraces hacker y banderas falsas para camuflar ciberdelitos internacionales

    Muchos piratas informáticos intentan disfrazar sus ataques para que parezcan culpa de otros países, pero sus objetivos finales y técnicas siempre les acaban delatando. El último caso es el del grupo hacker chino que se hizo pasar por iraní para atacar al Gobierno de Israel y a sus empresas tecnológicas