.

Nicolas Ortega

Inteligencia Artificial

TR10: Destreza robótica

1

Los modelos virtuales ayudan a los robots a aprender a hacer tareas físicas complejas por sí mismos a base de prueba y error

  • por Will Knight | traducido por Ana Milutinovic
  • 28 Febrero, 2019

  • ¿Qué? Los robots se están enseñando a sí mismos a desenvolverse en el mundo físico

  • ¿Por qué? Si los robots aprendieran a lidiar con el desorden del mundo real, serían capaces de hacer muchas más cosas útiles

  • ¿Quién? OpenAI, Universidad Carnegie Mellon, Universidad de Michigan, UC Berkeley

  • ¿Cuándo? De tres a cinco años

A pesar de todo lo que se oye sobre las máquinas que destruyen empleo, los robots industriales son torpes y poco versátiles. Una máquina puede agarrar piezas en una línea de ensamblaje con una precisión asombrosa, sin descanso y sin aburrirse nunca. Pero si movemos el objeto media pulgada o lo reemplazamos por otro ligeramente diferente, la máquina lo buscará sin parar o intentará agarrar el aire.

Los robots aún no pueden ser programados para descubrir cómo agarrar un objeto con solo mirarlo, como hacen las personas. Pero ahora sí son capaces de aprender a manipular el objeto por sí mismos a través de un método virtual de prueba y error. Uno de los proyectos con esta misión es Dactyl, un robot que se enseñó a sí mismo a voltear un cubo de juguete con los dedos (ver La IA que pasó cien años de soledad aprendiendo a usar una mano). Dactyl, creado por la organización sin ánimo de lucro OpenAI de San Francisco (EE.UU.), consiste en una mano de robot lista para usar, rodeada por una serie de luces y cámaras. Gracias a lo que se conoce como aprendizaje reforzado, el software de la red neuronal aprende a agarrar y girar un cubo dentro de un entorno simulado antes de que la mano lo pruebe de verdad. El software experimenta, al principio, al azar, fortaleciendo las conexiones dentro de la red a lo largo del tiempo a medida que se acerca a su objetivo.

Si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

En general, no es posible transferir ese tipo de práctica virtual al mundo real, porque simular algo como la fricción o las variadas propiedades de diferentes materiales resulta muy complicado (ver Este robot virtual se autoenseña artes marciales como en 'Matrix'). El equipo de OpenAI lo solucionó añadiendo aleatoriedad al entrenamiento virtual, es decir, dándole al robot una aproximación para el desorden de la realidad. Hacen falta más innovaciones para que los robots dominen la destreza avanzada necesaria en un almacén o fábrica real (ver Este robot gana a la Jenga con nociones de física y sentido del tacto). Pero si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

Inteligencia Artificial

 

La inteligencia artificial y los robots están transofrmando nuestra forma de trabajar y nuestro estilo de vida.

  1. Este chip de IA gigante ayudará a crear fármacos contra el cáncer

    La 'start-up' Cerebras ha desarrollado un chip de gran tamaño que reduce el tiempo de entrenamiento de los algoritmos de aprendizaje profundo de semanas a horas. Ahora, un laboratorio estadounidense lo ha probado con el objetivo de predecir cómo un tumor responde a ciertos medicamentos 

  2. Esta IA ha leído a Shakespeare para saber qué parte de una obra escribió

    Numerosos historiadores han intentado descubrir qué escenas de 'Enrique VIII' fueron escritas por el dramaturgo británico y cuáles por otro autor, John Fletcher. Ahora, un algoritmo de aprendizaje automático ha analizado el estilo de ambos para averiguar qué líneas elaboró cada uno 

  3. Cómo acabar con los algoritmos sexistas que conceden créditos

    Goldman Sachs está siendo investigada por discriminación de género tras una reciente polémica con Apple Card, pero la compañía alega que no tiene en cuenta el género para determinar la solvencia crediticia de un cliente. Las investigaciones sugieren que en realidad incluir ese criterio mitigaría el sesgo algorítmico