.

Nicolas Ortega

Inteligencia Artificial

TR10: Destreza robótica

1

Los modelos virtuales ayudan a los robots a aprender a hacer tareas físicas complejas por sí mismos a base de prueba y error

  • por Will Knight | traducido por Ana Milutinovic
  • 28 Febrero, 2019

  • ¿Qué? Los robots se están enseñando a sí mismos a desenvolverse en el mundo físico

  • ¿Por qué? Si los robots aprendieran a lidiar con el desorden del mundo real, serían capaces de hacer muchas más cosas útiles

  • ¿Quién? OpenAI, Universidad Carnegie Mellon, Universidad de Michigan, UC Berkeley

  • ¿Cuándo? De tres a cinco años

A pesar de todo lo que se oye sobre las máquinas que destruyen empleo, los robots industriales son torpes y poco versátiles. Una máquina puede agarrar piezas en una línea de ensamblaje con una precisión asombrosa, sin descanso y sin aburrirse nunca. Pero si movemos el objeto media pulgada o lo reemplazamos por otro ligeramente diferente, la máquina lo buscará sin parar o intentará agarrar el aire.

Los robots aún no pueden ser programados para descubrir cómo agarrar un objeto con solo mirarlo, como hacen las personas. Pero ahora sí son capaces de aprender a manipular el objeto por sí mismos a través de un método virtual de prueba y error. Uno de los proyectos con esta misión es Dactyl, un robot que se enseñó a sí mismo a voltear un cubo de juguete con los dedos (ver La IA que pasó cien años de soledad aprendiendo a usar una mano). Dactyl, creado por la organización sin ánimo de lucro OpenAI de San Francisco (EE.UU.), consiste en una mano de robot lista para usar, rodeada por una serie de luces y cámaras. Gracias a lo que se conoce como aprendizaje reforzado, el software de la red neuronal aprende a agarrar y girar un cubo dentro de un entorno simulado antes de que la mano lo pruebe de verdad. El software experimenta, al principio, al azar, fortaleciendo las conexiones dentro de la red a lo largo del tiempo a medida que se acerca a su objetivo.

Si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

En general, no es posible transferir ese tipo de práctica virtual al mundo real, porque simular algo como la fricción o las variadas propiedades de diferentes materiales resulta muy complicado (ver Este robot virtual se autoenseña artes marciales como en 'Matrix'). El equipo de OpenAI lo solucionó añadiendo aleatoriedad al entrenamiento virtual, es decir, dándole al robot una aproximación para el desorden de la realidad. Hacen falta más innovaciones para que los robots dominen la destreza avanzada necesaria en un almacén o fábrica real (ver Este robot gana a la Jenga con nociones de física y sentido del tacto). Pero si los investigadores logran usar este tipo de aprendizaje de manera fiable, los robots podrían montar aparatos, llenar el lavavajillas e incluso ayudar a la abuela a levantarse de la cama.

Inteligencia Artificial

 

La inteligencia artificial y los robots están transofrmando nuestra forma de trabajar y nuestro estilo de vida.

  1. El padre de los 'deepfakes' lucha contra el monstruo en el que se han convertido

    Si su iPhone es capaz de convertirle en un unicornio es gracias al trabajo de Hao Li. Después de perfeccionar su trabajo para aplicarlo el cine y la medicina, se ha centrado en encontrar formas de detectar estas falsificaciones cada vez más realistas, fáciles de crear y difíciles de identificar

  2. Este avance traerá chatbots más inteligentes y más noticias falsas

    El fabricante de chips Nvidia está centrando sus esfuerzos en el procesamiento del lenguaje natural. Su nuevo software, basado en dos enfoques de Google, está diseñado para eso, una novedad tecnológica que, como siempre, tiene un parte buena y una mala

  3. Google publica un vídeojuego para que la IA aprenda a jugar al fútbol

    El equipo de inteligencia artificial del gigante ha lanzado 'Google Research Football Environment', un entorno con varios niveles de complejidad que cualquier investigador puede usar para entrenar a sus algoritmos a lidiar con lo imprevisible